IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 8, AUGUST 1999 1583

To see the relation between Theorem 1 and Proposition 1, let Author’'s Reply

P, = o™ 'P, wherea is a positive number that satisfies (3) an

P is the solution to the Lyapunov equation (4). Then, it follows frorﬁ(ve thanl|<t00b3 a?r(]j Funlah?shl f?r their |nteredst n ou: artlclﬁ: Irr]1deed
(2) that P, is a solution to (5) forp < n,. In other words, the our result needs the selection of a matxand a scalar whic

Riccati inequality (5) is solvable if conditions (2)—(4) are satisfied. T'2XIMiz€ the bounm}ko_(Q, ). Qoba and Fur_wahashl propose a r_esult_
Let 7 be the maximum value for which (5) is solvable, 0|Ihat do.e.s not need this seleptlon, anq their Tesu'.t .IS summarlzeq n
equivalently, the linear matrix inequalities [1] Proposition 1_th_e syst_em (1) is stable if the Riccati inequality _(5) is
solvable and it is equivalent to the statement that the mafiiy) in
(9) has no eigenvalue on the imaginary axis. Algds not expressed
explicitly. However, the solvability of (5) can be more easily checked

by the well-known Bounded Real Lemma [1], i.e., the solvability of
are solvable. As is well known [2], the maximum valijés obtained (5) is equivalent to

by checking whether or not the corresponding Hamiltonian matrix

I nP
<77P —I—ATP—PA)>O and P >0 (8)

nll(sLy = )7 e < 1 (A1)
i) — A I 9
(n) = 2T —A" ©®)  where||G(s)]|e = sup,, Tmax[G(jw)]. Therefore, we may conclude
. . . . that (1) is stable ify > 0 satisfies condition (A1), and we can obtain
has an eigenvalue on the imaginary axis. the explicit bound of; when we use (Al).
Corollary 1: The system
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is asymptotically stable ifl(E1,-- -, Ex)|| < 7/Vk for all t.
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the current value of a sample average cost is compared against a target Il. THE MODEL
value, say’. If the sample average is above (respectively, below) the consider an MDRS, T, P) as defined in the literature [12] with
valueV, the policy g. (respectivelyg”) will be used until the next coyntable state spacs, measurable action spadé, B(U')), and
visit to the state:. Borel measurable transition kernBl= (p,,(«)). i.e., for all = and
Steering policies find their motivation in the control of Markov, in s, the mappings: — p., (), are Borel measurable df, and
chains with a single constraint. In that context, Lagrangian argumeigisfy the standard properti®s< p.,,(u) < 1 and S, p.,(u) =
can often be invoked to construct an optimal stationary policy for all « in U. The state proces$X(n),n = 0,1,---} and
by simple randomization between two (pure) stationary policigfe control process{U’(n),n = 0,1,---} are defined on some
g" and g. with g" (respectively,g.) overshooting (respectively, measurable spadé?, F). The feedback information available to the

undershooting) the constraint value; the randomization bias is selecipiision-maker is encoded through the f&(n),n = 0,1,---}
so that the constraint value is met exactly [2], [5], [6], [9]-[11]which are defined recursively b (0) = X(0) and H(n + 1) =
The steering policy represents an alternafiv@lementatiorto this (7 (n), U(n), X(n + 1)). For eachn = 0,1,---, the rvs X(n).

optimal policy in situations where the randomization bias is neith@r(,,), andH (n) take values ir6, U, andS x (U x )™, respectively;
available nor easily computable. In that context, the optimality of thg@e also introduce the information-fields F, = o{H(n)} and
steering policy thus reduces to whether it steers the sample avergge= 5 {H(n),U(n)} = F,, V o{U(n)}.
cost to the target valu®”. The space of probability measures (8, B(U)) is denoted by
When the distinguished state is recurrent under both policies A1(17). An admissiblecontrol policy = is any collection{,,,n =
g" and g., we show that the sample average cost is steered (in @n,---} of mappingszt,: S x (U x §)" — M(U) such that
a.s. sense) to the desired vallie The analysis relies on samplefor all » = 0,1,--- and every Borel subseB of U, the mapping
path arguments and takes advantage of hidden regenerative propegigs(t’ x S)” — [0,1]: h, — ,(h.; B) is Borel measurable. The
induced by the steering policy. The discussion is in the spirit of thgllection of all such admissible policies is denoted By
proof of the ergodic theorem for recurrent Markov chains based onLet ;. be a probability measure afi. The definition of the MDP
the strong law of large numbers [3] and is given under minimals, {7, P) then postulates the existence of a collection of probability
conditions, namely the integrability of the cost over a return cyci@easures{P™,= € P} on (£2,F) such that (1), (2) below are
under both policies. and g*. satisfied. For every admissible polieyin 7, the probability measure
A preliminary version of the work was reported in [7], whereP™ s constructed so that undeP™, the rv X, has probability
the one-step cost function was assumed to depend only on thstribution ., the control actions are selected according to
state. Here, we extend the result to the general case in which the

cost function depends ohoth state and control variables. In [8], PT[U(n) € B|F,] = mn(H(n); B), B e B(U) (1)

we gave another proof for the convergence of the sample average

cost to the desired valu® in the framework of [7]. This was foralln =0,1,---, and the state transitions are realized according to
done by noting that the sample average cost, when evaluated at the

return times toz, can be related to the output of a two-dimensional PT[X(n+1) =y|Gn] = pxn)y(U(n)), y€S 2
stochastic approximation scheme of the Robbins—Monro type. This ] ] )
stochastic approximation was shown to converge a.s. under soiffe@!! 72 =0,1,---. The expectation operator associated with is

L*-type conditions, namely square-integrability of the return cycle f¢noted byE™. When is the point mass distribution atin S, this

- and of the total accumulated cost over a return cycle under b@tftation is specialized &7 and E;, respectively.

policiesg. andg®. The convergence results of [8] are obtained under Following standard usage, a polieyin 7 is said to be a Markov

assumptions stronger than the ones used here. stationary pollcy_ if there exists a mapping S — M(U) such
The steering policy should be contrasted against the so-daited that for eachB in 5(U), we havem,(H(n); B) = ¢(X(n);B)

sharingimplementation of [1], whereby the decision-maker alternatds @S- for alln = 0.1.---. in which case the policy is identified

between the two policies” andg. according to some deterministic With the mappingy itself. For each Markov stationary poligy the

(thus nonadaptive) mechanism associated with the recurrence cydié§ 1-X (),n = 0,1.---} form a time-homogeneous Markov chain

As the instrumentation of time-sharing policies requires the explidi1der - , ) o

evaluation of certain cost functionals, we can interpret the steerint(fny Borel mappinge: S x U — R is interpreted as a one-

policy as an adaptive version of time sharing. step cost function, and the corresponding sample cost averages

The steering policy is adapted from an idea originally proposed<(?): 7 = 1.2.--} are defined by

by Nain and Ross [10] in the context of an optimal resource n_1
allocation problem with a constraint. In a subsequent paper [11], Je(n) = 1 Z (X 1), U)), n=1,2--. 3)
Ross conjectured the optimality of a version of the steering policy in s

the case of finite-state Markov chains with a single constraint. The ) )

steering policy proposed by Ross in [11] differs from the one he;@e foII_OWIng assumptions, A1)-A4), are enforced throughout the
in that the decision to switch policies is taken at every time epocfiScussion.

However, in the context of finite-state Markov chains discussed inAl) There exist two (possibly randomized) stationary poligiés

[11], the two policiesy* andg. coincide in all but one state [2], and andg. such that the Markov chaiflX' (n),n = 0,1,---} has
Ross’ version simply reduces to the steering policy considered here @ single recurrent class under each one of the poligiesnd

with the distinguished statechosen as the single state whefeand g+. These recurrent classes have a nonempty intersection, and
g. differ. Thus, the results given here imply Ross’s conjecture while starting from any transient state (if any) the time to absorption
providing an alternative adaptive solution to the original resource in the recurrent class is a.s. finite under each policy.
allocation problem [10]. Let = denote any state i¥ which is recurrent under botf" and

A word on the notation: The indicator function of any g6tis g¢.. By Al), such a state exists and has the property that the system
simply denoted byl[E], andlim, is understood with: going to returns to it infinitely often under each policy. The first return time to
infinity. the state: is the rvT defined byI" = inf {n > 1: X (n) = z}. From
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now on, in statements, relations, and definitions which holcbfah By (8) the steering policy indeed steers the sample average cost

policiesg* andg., we use the compact notatignfor either policy. .J.(n) to the desired valu&. As will be apparent from the derivation
A2) The mean recurrence time to the statés finite underP?, of Theorem 1, the convergence (9) for general cost mappings is a
i.e., BY[T] < oc. direct result of (7). This proof is relegated to subsequent sections and

By A2), the state: is positive recurrent undeP?. Define acycle proceeds by first establishing the convergence results (7)—(9) along

as the time period that elapses between two consecutive visits of Hi§ Seduence of times at which statés visited.
process{X(n),n = 0,1,---} to the recurrent state. With some
prespecifiedBorel cost functionv: S x U — R, we associate the IV. CONVERGENCEALONG RECURRENCE TIMES

cost per cycleZ, = ST o (X (1), U(t)). , _ . -
per cy =0 V(X (8),U()) Under the steering policy, the decisions for switching between

A3) E;E Ze>|<]p<ected cost per cycle is finite und#¥, ie., policies are taken only at the times the state process visits state
=lev o This suggests that the behavior of this control algorithm might be
Under A1)-A3), standard renewal arguments [3] already imply fyly determined by properties of the sample average cost sequence
) EY[Z) ; ; taken only at these recurrence epochs.
limy, Ju(n) = EYT] — L(g)  Plas. Q) Consider the distinguished stateentering the definition of the
i policy «, and recursively define the sequenceMof) {oc}-valued
A4) There exists a scaldr such thatl,,(g.) <V < I,(g"). recurrence time§r(k),k = 0,1,---} by 7(0) = 0 and
Hence, under A4) the policy™ (respectively,g.) overshoots
(respectively, undershoots) the valiewhich represents a desired r(k+1)=inf {t>7(k): X(#) =z} (10)
performance level. We are interested in designing an admissible
policy which ste_e_rs the sample average chstn) to V7 and which for k = 0,1,---, with the usual convention that k+ 1) = oo if the
requires no additional statistical knowledge about the system other o . .
; . - * sét{t>7(k): X(t) =z} is empty. The intervalr(k), 7(k+1)) is
than.that needgd for |mplementlng the pqlm@s z.;md.g . One simply the (k + 1)t cycle.
candidate solution is provided by the steering policy introduced in The recurrence condition A1) and the definition of the steering

the next section. policy « lead readily to the following intuitive fact, the proof of
which is omitted for sake of brevity.

lll. THE STEERING PoLicy Lemma 1: Assume the recurrence condition Al) to hold. For all
The steering policyr = {ay,,n = 0,1,---} is of the form k=1,2,---, the rvs7(k) is P a.s. finite, so that the state process
o {X(n),n = 0,1,---} visits the state: infinitely often underP<.
an(H(n);) =n(n)g™(X(n)i-) + (1= n(n))g.(X(n):) Under the additional assumptions A2)-A4), the steering poticy

n) specifies which of alternates infinitely often between the two policigsand g..

forn =0,1,---, where the{0, 1}-valued rvy, 1
S e, 1} I Under the recurrence assumption Al), the process

the two policiesy™ andg. is used in the time sldin, n + 1). These

P _ : {(X(n),U(n)),n = 0,1,---} is a regenerative process with
rvs {n(n),n = 0,1,---} are generated through the recursion regeneration epochér (k). k = 1.2.--} under each one of the
n(n) =1[X(n) = z]1[J.(n) < V] + 1[X(n) # z]n(n — 1) measuresP?  and PY [4, p. 298], while this may not be the case
) ) ) underP“ owing to the nonstationarity af. It thus seems reasonable
forall n =1,2,---, with 5(0) an arbitrary{0, 1}-valued rv. During 5 v decomposing this nonstationary process into two regenerative
each cycLe the steering poliay operates according to one of thegneg by connecting together the cycles associated with the use of
policies g” and g... each one of the policies. This idea is made precise in Lemma 2
Set below; its proof is omitted in the interest of brevity.
eV —1L(g) ) Fix m = 1,2,---. Let t*(m) [respectively,t.(m)] be the left
p= L.(g*) — L.(g+) boundary of the slot during which the poligy (respectively,g.)
is used for themth time so thatyn(t*(m)) = 1 (respectively,

and observe from A4) thdt< p* < 1. For eachn = 1,2,---, the rv n(t.(m)) = 0). The rv#*(m) [respectively,.(m)] being aF,-

no! stopping time, the nX..(m) = X (t"(m)) [respectively,X.(m) =
p(n) =~ > () (6)  X(t.(m))]is Fi+(m)-measurable (respectivelf, . (..,-measurable).

=0 Similarly, the rv +*(m) [respectively,t.(m)] being also ag,-

represents the fraction of time ovfi), ) during which the policy Stopping time, the nU*(m) = U(*(m)) [respectively,U.(m) =
g" is used. The main properties of the steering policyare now U(t«(m))] iS G+ (m)-measurable (respectively,, (.. -measurable).
stated. All a.s. convergence statements are taken uRtletnless If X"(m) = X(t"(m)) = z, thent"(m) marks the beginning

otherwise specified. of a cycle, and the policyy® is used throughout that cycle by
Theorem 1: Under Al)-A4), we have definition of «. For each?¢ = 1,2,---, let T*(¢) [respectively,
. T.(¢)] denote the length of théth cycle during which the policy”
lim, p(n) =p°  as. (") (respectivelyg.) is used, and set*(() = S'_, T*(s) [respectively,

T.(0) = T Tu(s)]. The rv 77 (£) [respectively,r.(()] represents

and the total number of slots in thé first cycles during whichg™
lim, J,(n) = p*I.(¢") + (L — p")(g9+) =V as. (8) (respectivelyg.) is used. With this notation we have the following.

) Lemma 2: Assume Al) holds. Under P%, the rvs

Moreover, for any Borel mapping: S x U — R such that (X*(m), U (m)),m = 1,2,---} [respectively, {(X.(m),
E2[|Zc]] < oo, we get U.(m)),m = 1,2,---}] form a regenerative process with

lim, Jo(n) = pI.(g") + (1 — p*).(g.) aws. ) regeneration epochs at successive visits to theg setx U.
‘ For an arbitrary one-step cost function S x U — R, we now
whereZ. = ST (X (¢),U(t)) andI.(g) = (E?[Z.]/E<[T)). study the convergence df.(7(k)) ask, the number of cycles, goes
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to co. For eaché = 1,2,---, the rvsZ>({) and Z..(¢) defined by
T (0)
Zi= Y e(XT(m), U (m))
m=7*(£—1)+1
and
T.(£)
Zeu(l) = Z (Xu(m),Us(m))

m=r, ({—1)+1

represent the total costs over tftl cycle during which the policies

g" and g. are used, respectively.

For eachk = 1,2,---, if the rv v* (k) [respectively v. (k)] counts
the total number of cycles in the firgt cycles during whichg*
(respectively,g.) is used, then we find

r(k)—1 v (k) v ()
DT oAXM. UMY =D ZH0+ > Zell).  (1D)
t=0 =1 (=1

With ¢ = 1, this last relation specializes to

v (k) vy (k)

(k)= T(O)+ Y T.(0). (12)
=1 =1

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 8, AUGUST 1999

Fix k =1,2,---. Setq(k) = (v"(k)/k) and note(v.(k)/k) =
1 — ¢(k). From (11), (12), we have

T(:) = q(k)AT" (k) + (1 — q(k)) AT. (k)
(k) = q(k)AT* (k)
) = AT + - g AT 3D
and
Je(r(k)) = q(R)AZZ (k) + (1 — q(k))AZ:(F) 22)

q(k)AT*(k) 4 (1 — ¢(k)) AT (k)

with the convention(0/0) = 0. Letting & go to infinity in
these expressions, we see from (17)—(20) that unHEr the
sequenceq(7(k)/k).k = 1,2,---}. {p(7(k)),k = 1,2,---}, and
{Je(7(k)), k 1,2,---} converge a.s. as soon dg(k),k =
1,2,---} does.

Theorem 2: Under A1)-A4), we havéim; ¢(k) = ¢* a.s. where

. " EL([T]
C (L =p) BT+ pr BN[T]

q (23)

This key convergence result is proved in the next section and leads
to the following convergence results along recurrence epochs by the

For eachk = 1,2,---, we also find it convenient to introduce thecalculations outlined earlier.

averaged quantities

v*(k
AZIE) = s i) z:0) (13
and
1 vy (k)
AZ. (k) = o) ; Zex(0) (14)
as well as
L
AT (k) = s g T () (15)
and
AT.(k) = — f T.(0). (16)
va(k) =
It is plain from Lemma 2 that the rv§Z>(().f = 1,2,---}

[respectively, {Z..((),¢ = 1,2,---}] form a (possibly delayed)
renewal sequence unddP®, with E°[Z*(()] = E? [Z.] and
E®[Z..(0)] = E%[Z.] for eacht = 2,3,---. Keeping in mind
that a.s. convergence statements are taken uRderwe have by
Lemma 1 thatlimy v* (k) = lim; v« (k) = oc while by Lemma 2
the strong law of large numbers undBf' yields

limp AZ! (k)= E? [Z.] as. 17)
and

lim, AZ..(k) = E9*[Z.] a.s. (18)
as well as

lim, AT"(k) = E? [T] a.s. (19)
and

lim, AT.(k) = E9[T] a.s (20)

Theorem 3: Under A1)-A4), we have

limy, p(7(k)) =p" a.s. (24)

and for any mapping: S x U — R such thatE?[|Z.]] < oo, it
holds that

limg Jo(7(k)) = p*I(g") + (1 — p").(gx) a.s. (25)
Moreover, the law of large numbers holds in the form
limy, (k) =¢"EY [T+ (1— ¢ )E*[T] as. (26)

Applying (25) to the prespecified cost mapping we get
limy J,(7(k)) = V from (4) and (5).

V. A PROOF OF THEOREM 2

Crucial to the proof of Theorem 2 is the following deterministic
lemma.

Lemma 3: Let {a(k),k = 1,2,---}, {b"(k),k = 1,2,---} and
{b.(k),k = 1,2,---} be R-valued sequences such tH&t(k) >0
andb.(k)>0 for k = 1,2,---, andlim; 6" (k) = lim; b.(k) = 0
and lim; a(k) = a for somea in R. If the R-valued sequence
{6(k).k = 1,2,---} is defined recursively by

B(k) — b7 (k),
8(k) + ba(k),

if 6(k) > a(k)

it (k) < a(k) 27)

9(k+1):{

for k = 1,2,---, with #(1) arbitrary inR, then either{#(k),k =
1,2,---} converges monotonically (in the tail) to some constant
f(0) # a, or limy 6(k) = a.
Proof: By assumption, givere >0, there exists a positive

integer k. such thatb™ (k) <=, b« (k) <e, and |a(k) — a| < e for

all k > k., and definen. = inf {k > k.: (k) € (a—c,a+2)}. If

m. = oo, thend(k) is not in the intervala —z,a+=) forall & > k..

If 6(k.) < a — £, an easy induction argument based on (27) shows
that for allk > k., we haved(k) < a, thusé(k) < a — . Hence,
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the sequencéd (k). k = 1,2,---} is monotone increasing from time and b.(k) = ((1 — ¢(k + k«(w),w))/k + k.(w) + 1) for all

k. onward and thus must converge to some vdlie) < a — ¢.
The cased(k.) > a + ¢ is handled similarly.

Supposen. < oo so that#(m.) now lies in(a—e, a+¢). A worst
case argument based on (27) then gives = — b* (m.) < 8(m. +
1)<a+e+bi(me). If a —es<b(m.+1)<a+ e, then the same
worst case argument also yields

a—e—b"(m.+1)<8(m.+2)<a+ze+b(m.+1).

If 8(m. + 1) does not belong t¢a — =,a + <), then two cases are

possible: either 1§ —=—b"(m.) < #(m.+1) < a—<, in which case
f(m:+1)<a(m:+1), thusf(m.+2) =0(m:+1)+bs(m+1)
by (27), and we get

a—e=b"(m)+bi(me+1)<b(m.+2)<a—zc+b(m:+1)

or 2)a+:= < f#(m: 4+ 1)<a 4+ ¢+ b(m:), in which case
6(m.+1)>a(m.+1), thusf(m.+2) = 8(m.+1)—-0"(m-+1)
by (27), and we get

a+e—=b"(me+1)<b(m.+2)<a+z+bi(me:)—b"(m.+1).

Collecting these inequalites we concludea - —
max {b*(m:),b*(m. + 1)}<f8(m. + 2)<a + +
max{b.(m.),b«(m< + 1)}. An induction argument now implies

g
£

a—c—

nax b*(m.+1i) < 0(m.+4€) < a+=+ max by(m.+1)
0<i<t 0<i<t
forall ¢ =1,2,---. Becausen. > k., the definition ofk. yields
a —2e<8(k)<a+2¢ for all k > m., ande being arbitrary, the
proof is now complete.

]
A proof of Theorem 2 is now feasible: as we note from th

definition of o that

vi(k+1) =v (k) + 1[J.(7(k)) < V], k=0,1,---
(28)
it is plain that the rvgq(k),k = 1,2---} can be defined recursively
by
1 . .
, q(k) = == a(k), if Jo(r(k))>V
g(k+1) = o
q(k) + k——i—l(l —q(k)), TV >J.(r(k))
for k =1,2,---. For eachk = 1,2,---, we set
Y () AT (R)V — AZ..(k)

= (AZ: (k) = AZa (k) — (AT (k) — AT (V.
Invoking the convergence (17)—(20), we get

EZ [TV - E¢[Z.]
(B¢ [Z,) — E2[Z,]) — (B¢ [T] — EZ[T)V

lim, Y (k) =

9
so thatlimg Y (k) = ¢* a.s. by simple algebra based on (4), (5),[ ]

and (23).

Pick a samplev in the set of P*-measure ones where (17)—(20)

simultaneouslyhold, thuslim; Y (k,w) = ¢* as well. Under con-
dition A4), the denominator oft"(k,w) is positive for largek.
It is now plain from (22) (withc¢ v) that for large k, say
k > k.(w), the condition,(7(k,w),w) >V holds if and only if
q(k,w)>Y (k,w), and the sequencgy(k+ k. (w),w), k =1,2---}
indeed satisfies the recursion (27) witk) = q(k + k. (w),w),
a(k) =Y (k+ko(w),w), b"(k) = (¢(k+ ke(w),w)/k+ E(w)+ 1)

k=1,2,---. Becausd) < q(k+ k«(w),w) < 1, the assumptions of
Lemma 3 are immediately satisfied with= ¢*, and the sequence
{q(k+ k.(w),w),k =1,2,---} does converge. It is not possible for
the valueq g(k+k.(w),w),k = 1,2,---} to converge monotonically
(in the tail) to some value not equal #3, for this would imply that
the policy o sticks to one policy from some cycle onward, in clear
contradiction with Lemma 1. Hencémy q(k,w) = ¢~.

VI.

Theorem 1 is easily recovered from Theorem 3. For eack
1,2,---, let k(n) = max{k > 0: 7(k) < n} be the number of
cycles over the horizof0, n) including the one in progress at time
n, and note that-(k(n)) < n<7(k(n)+ 1) so that

MJC(T(k(,L))) < Ju(n) < T(k(n) +1)

n n

PERFORMANCE OF THESTEERING PoLicy

Jo(r(k(n)+ 1))
for any nonnegative mapping S x U — R4, and in particular

T(k(n))p < M

(7(k(n))) < p(n) p(r(k(n) + 1).

By Lemma 1, lim, k(n) oo, while by the law of large
numbers (26), it is clear thdim, (7(k)/7(k + 1)) = 1 a.s. and
because(r(k(n))/m(k(n) + 1)) < (r(k(n))/n) < 1, we have
lim,, (7(k(n))/n) = lim,, (r(k(rn)+1)/n) =1 a.s. By Theorem 3,
the inequalities earlier in the discussion, together with the last
convergence, yield (7) and (9) for nonnegative mappings. For a
general cost mapping (and in particularc v), start with the
decompositionJ.(n) = J.+(n) — J.—(n) for all n 1,2,---,
wherect = max (£¢, 0). Applying the result for nonnegative map-
pings developed above, we conclude:,, J.(n) = lim, J.+ (n) —

lim, J.—(n) = p"I.(¢") + (1 — p*)I.(y9~) a.s. and Theorem 1 is
Bstablished with (8) an immediate consequence of (9).
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