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To see the relation between Theorem 1 and Proposition 1, let
P� = ��1P , where� is a positive number that satisfies (3) and
P is the solution to the Lyapunov equation (4). Then, it follows from
(2) that P� is a solution to (5) for� < �k . In other words, the
Riccati inequality (5) is solvable if conditions (2)–(4) are satisfied.

Let �̂ be the maximum value for which (5) is solvable, or
equivalently, the linear matrix inequalities [1]

I �P
�P �I �ATP � PA

> O and P > O (8)

are solvable. As is well known [2], the maximum value�̂ is obtained
by checking whether or not the corresponding Hamiltonian matrix

H(�) =
A I

��2I �AT (9)

has an eigenvalue on the imaginary axis.
Corollary 1: The system

_x(t) = Ax(t) +

k

i=1

Ei(t)x(t� hi) (10)

is asymptotically stable ifk(E1; � � � ; Ek)k < �̂=
p
k for all t.

Proof: Let

V (x(t)) = xT (t)Px(t) +

k

i=1

t

t�h

xT (�)x(�)d�: (11)

Then

_V (x(t)) = xT (t)(kI + ATP + PA + �2P 2)x(t)

� xT (t)P (�2I � ~E ~ET )Px(t)

� [ ~ETPx(t)� ~x]T [ ~ETPx(t)� ~x] (12)

where ~E = (E1; � � � ; Ek) and ~x = (xT (t� h1); � � � ; xT (t� hk))
T .

From this, we know that (10) withk ~Ek < � is asymptotically stable if

kI +ATP + PA+ �2P 2 < O (13)

is solvable. Then, the result follows by noticing that the solvability
of (13) is equivalent to that of

I + ATP + PA + k �2P 2 < O: (14)
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(5) is equivalent to

�k(sIn � A)�1k1 < 1 (A1)

wherekG(s)k1 = sup
!
�max[G(j!)]. Therefore, we may conclude

that (1) is stable if� > 0 satisfies condition (A1), and we can obtain
the explicit bound of� when we use (A1).
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Abstract—The authors consider the class of steering policies for
controlled Markov chains under a recurrence condition. A steering policy
is defined as one adaptively alternating between two stationary policies
in order to track a sample average cost to a desired value. Convergence
of the sample average costs is derived via direct sample path arguments,
and the performance of the steering policy is discussed. Steering policies
are motivated by, and particularly useful in, the discussion of constrained
Markov chains with a single constraint.

Index Terms—Adaptive control, implementation, Markov decision pro-
cesses.

I. INTRODUCTION

We introduce the class of steering policies as a means to adaptively
control a class of Markov chains. This steering policy adaptively
alternates between two stationary (possibly randomized) policies, say
g� andg

�

; and the decision to switch policies is taken only when the
system visits some distinguished statez: At those (random) instants,
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the current value of a sample average cost is compared against a target
value, sayV: If the sample average is above (respectively, below) the
valueV; the policyg� (respectively,g�) will be used until the next
visit to the statez:

Steering policies find their motivation in the control of Markov
chains with a single constraint. In that context, Lagrangian arguments
can often be invoked to construct an optimal stationary policy
by simple randomization between two (pure) stationary policies
g� and g� with g� (respectively,g�) overshooting (respectively,
undershooting) the constraint value; the randomization bias is selected
so that the constraint value is met exactly [2], [5], [6], [9]–[11].
The steering policy represents an alternativeimplementationto this
optimal policy in situations where the randomization bias is neither
available nor easily computable. In that context, the optimality of the
steering policy thus reduces to whether it steers the sample average
cost to the target valueV:

When the distinguished statez is recurrent under both policies
g� and g�; we show that the sample average cost is steered (in an
a.s. sense) to the desired valueV: The analysis relies on sample
path arguments and takes advantage of hidden regenerative properties
induced by the steering policy. The discussion is in the spirit of the
proof of the ergodic theorem for recurrent Markov chains based on
the strong law of large numbers [3] and is given under minimal
conditions, namely the integrability of the cost over a return cycle
under both policiesg� and g�:

A preliminary version of the work was reported in [7], where
the one-step cost function was assumed to depend only on the
state. Here, we extend the result to the general case in which the
cost function depends onboth state and control variables. In [8],
we gave another proof for the convergence of the sample average
cost to the desired valueV in the framework of [7]. This was
done by noting that the sample average cost, when evaluated at the
return times toz; can be related to the output of a two-dimensional
stochastic approximation scheme of the Robbins–Monro type. This
stochastic approximation was shown to converge a.s. under some
L2-type conditions, namely square-integrability of the return cycle to
z and of the total accumulated cost over a return cycle under both
policiesg� andg�: The convergence results of [8] are obtained under
assumptions stronger than the ones used here.

The steering policy should be contrasted against the so-calledtime-
sharingimplementation of [1], whereby the decision-maker alternates
between the two policiesg� andg� according to some deterministic
(thus nonadaptive) mechanism associated with the recurrence cycles.
As the instrumentation of time-sharing policies requires the explicit
evaluation of certain cost functionals, we can interpret the steering
policy as an adaptive version of time sharing.

The steering policy is adapted from an idea originally proposed
by Nain and Ross [10] in the context of an optimal resource
allocation problem with a constraint. In a subsequent paper [11],
Ross conjectured the optimality of a version of the steering policy in
the case of finite-state Markov chains with a single constraint. The
steering policy proposed by Ross in [11] differs from the one here
in that the decision to switch policies is taken at every time epoch.
However, in the context of finite-state Markov chains discussed in
[11], the two policiesg� andg� coincide in all but one state [2], and
Ross’ version simply reduces to the steering policy considered here
with the distinguished statez chosen as the single state whereg� and
g� differ. Thus, the results given here imply Ross’s conjecture while
providing an alternative adaptive solution to the original resource
allocation problem [10].

A word on the notation: The indicator function of any setE is
simply denoted by1[E]; and limn is understood withn going to
infinity.

II. THE MODEL

Consider an MDP(S; U; P ) as defined in the literature [12] with
countable state spaceS; measurable action space(U;B(U)); and
Borel measurable transition kernelP � (pxy(u)); i.e., for all x and
y in S; the mappingsu ! pxy(u); are Borel measurable onU; and
satisfy the standard properties0 � pxy(u) � 1 and �y pxy(u) =
1 for all u in U: The state processfX(n); n = 0; 1; � � �g and
the control processfU(n); n = 0; 1; � � �g are defined on some
measurable space(
;F): The feedback information available to the
decision-maker is encoded through the rvsfH(n); n = 0; 1; � � �g
which are defined recursively byH(0) � X(0) andH(n + 1) �
(H(n); U(n); X(n + 1)): For eachn = 0; 1; � � � ; the rvsX(n);
U(n); andH(n) take values inS; U; andS�(U�S)n; respectively;
we also introduce the information�-fields Fn � �fH(n)g and
Gn � �fH(n); U(n)g = Fn _ �fU(n)g:

The space of probability measures on(U;B(U)) is denoted by
M(U): An admissiblecontrol policy� is any collectionf�n; n =
0; 1; � � �g of mappings�n: S � (U � S)n ! M(U) such that
for all n = 0; 1; � � � and every Borel subsetB of U; the mapping
S � (U � S)n ! [0; 1]: hn ! �n(hn;B) is Borel measurable. The
collection of all such admissible policies is denoted byP:

Let � be a probability measure onS: The definition of the MDP
(S;U; P ) then postulates the existence of a collection of probability
measuresfPPP �; � 2 Pg on (
;F) such that (1), (2) below are
satisfied. For every admissible policy� in P; the probability measure
PPP � is constructed so that underPPP � ; the rv X0 has probability
distribution�; the control actions are selected according to

PPP
�[U (n) 2 BjFn] = �n(H(n);B); B 2 B(U) (1)

for all n = 0; 1; � � � ; and the state transitions are realized according to

PPP
�[X(n+ 1) = yjGn] = pX(n)y(U(n)); y 2 S (2)

for all n = 0; 1; � � � : The expectation operator associated withPPP � is
denoted byEEE�: When� is the point mass distribution atx in S; this
notation is specialized toPPP �

x andEEE�
x ; respectively.

Following standard usage, a policy� in P is said to be a Markov
stationary policy if there exists a mappingg: S ! M(U) such
that for eachB in B(U); we have�n(H(n);B) = g(X(n);B)
PPP � a.s. for alln = 0; 1; � � � ; in which case the policy is identified
with the mappingg itself. For each Markov stationary policyg; the
rvs fX(n); n = 0; 1; � � �g form a time-homogeneous Markov chain
underPPP g:

Any Borel mappingc: S � U ! is interpreted as a one-
step cost function, and the corresponding sample cost averages
fJc(n); n = 1; 2; � � �g are defined by

Jc(n) �
1

n

n�1

t=0

c(X(t); U(t)); n = 1; 2; � � � : (3)

The following assumptions, A1)–A4), are enforced throughout the
discussion.

A1) There exist two (possibly randomized) stationary policiesg�

andg� such that the Markov chainfX(n); n = 0; 1; � � �g has
a single recurrent class under each one of the policiesg� and
g�: These recurrent classes have a nonempty intersection, and
starting from any transient state (if any) the time to absorption
in the recurrent class is a.s. finite under each policy.

Let z denote any state inS which is recurrent under bothg� and
g�: By A1), such a statez exists and has the property that the system
returns to it infinitely often under each policy. The first return time to
the statez is the rvT defined byT � inf fn � 1: X(n) = zg: From
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now on, in statements, relations, and definitions which hold forboth
policiesg� andg�; we use the compact notationg for either policy.

A2) The mean recurrence time to the statez is finite underPPP g;
i.e., EEEg

z [T ]<1:

By A2), the statez is positive recurrent underPPP g: Define acycle
as the time period that elapses between two consecutive visits of the
processfX(n); n = 0; 1; � � �g to the recurrent statez: With some
prespecifiedBorel cost functionv: S � U ! ; we associate the
cost per cycleZv � �T�1

t=0 v(X(t); U(t)):

A3) The expected cost per cycle is finite underPPP g; i.e.,
EEEg
z [jZv j]<1:

Under A1)–A3), standard renewal arguments [3] already imply

limn Jv(n) =
EEEg
z [Zv]

EEEg
z [T ]

� Iv(g) PPP g-a:s: (4)

A4) There exists a scalarV such thatIv(g�)<V <Iv(g
�):

Hence, under A4) the policyg� (respectively,g�) overshoots
(respectively, undershoots) the valueV which represents a desired
performance level. We are interested in designing an admissible
policy which steers the sample average costJv(n) to V and which
requires no additional statistical knowledge about the system other
than that needed for implementing the policiesg� and g�: One
candidate solution is provided by the steering policy introduced in
the next section.

III. T HE STEERING POLICY

The steering policy� = f�n; n = 0; 1; � � �g is of the form

�n(H(n); �) � �(n)g�(X(n); �) + (1� �(n))g�(X(n); �)

for n = 0; 1; � � � ; where thef0; 1g-valued rv�(n) specifies which of
the two policiesg� andg� is used in the time slot[n; n+ 1): These
rvs f�(n); n = 0; 1; � � �g are generated through the recursion

�(n) = 1[X(n) = z]1[Jv(n) � V ] + 1[X(n) 6= z]�(n� 1)

for all n = 1; 2; � � � ; with �(0) an arbitraryf0; 1g-valued rv. During
each cycle the steering policy� operates according to one of the
policies g� and g�:

Set

p� �
V � Iv(g�)

Iv(g�)� Iv(g�)
(5)

and observe from A4) that0<p�< 1: For eachn = 1; 2; � � � ; the rv

p(n) �
1

n

n�1

t=0

�(t) (6)

represents the fraction of time over[0; n) during which the policy
g� is used. The main properties of the steering policy� are now
stated. All a.s. convergence statements are taken underPPP� unless
otherwise specified.

Theorem 1: Under A1)–A4), we have

limn p(n) = p� a:s: (7)

and

limn Jv(n) = p�Iv(g
�) + (1� p�)Iv(g�) = V a:s: (8)

Moreover, for any Borel mappingc: S � U ! such that
EEEg
z [jZcj]<1; we get

limn Jc(n) = p�Ic(g
�) + (1� p�)Ic(g�) a:s: (9)

whereZc � �T�1
t=0 c(X(t);U(t)) andIc(g) � (EEEg

z [Zc]=EEE
g
z [T ]):

By (8) the steering policy indeed steers the sample average cost
Jv(n) to the desired valueV: As will be apparent from the derivation
of Theorem 1, the convergence (9) for general cost mappings is a
direct result of (7). This proof is relegated to subsequent sections and
proceeds by first establishing the convergence results (7)–(9) along
the sequence of times at which statez is visited.

IV. CONVERGENCEALONG RECURRENCETIMES

Under the steering policy�; the decisions for switching between
policies are taken only at the times the state process visits statez:
This suggests that the behavior of this control algorithm might be
fully determined by properties of the sample average cost sequence
taken only at these recurrence epochs.

Consider the distinguished statez entering the definition of the
policy �; and recursively define the sequence of[ f1g-valued
recurrence timesf�(k); k = 0; 1; � � �g by �(0) � 0 and

�(k + 1) � inf ft> �(k): X(t) = zg (10)

for k = 0; 1; � � � ; with the usual convention that�(k+1) =1 if the
setft> �(k): X(t) = zg is empty. The interval[� (k); �(k+ 1)) is
simply the (k + 1)rst cycle.

The recurrence condition A1) and the definition of the steering
policy � lead readily to the following intuitive fact, the proof of
which is omitted for sake of brevity.

Lemma 1: Assume the recurrence condition A1) to hold. For all
k = 1; 2; � � � ; the rvs�(k) is PPP� a.s. finite, so that the state process
fX(n); n = 0; 1; � � �g visits the statez infinitely often underPPP�:
Under the additional assumptions A2)–A4), the steering policy�
alternates infinitely often between the two policiesg� andg�:

Under the recurrence assumption A1), the process
f(X(n);U(n)); n = 0; 1; � � �g is a regenerative process with
regeneration epochsf�(k); k = 1; 2; � � �g under each one of the
measuresPPP g andPPP g [4, p. 298], while this may not be the case
underPPP� owing to the nonstationarity of�: It thus seems reasonable
to try decomposing this nonstationary process into two regenerative
ones by connecting together the cycles associated with the use of
each one of the policies. This idea is made precise in Lemma 2
below; its proof is omitted in the interest of brevity.

Fix m = 1; 2; � � � : Let t�(m) [respectively,t�(m)] be the left
boundary of the slot during which the policyg� (respectively,g�)
is used for themth time so that�(t�(m)) = 1 (respectively,
�(t�(m)) = 0). The rv t�(m) [respectively,t�(m)] being aFn-
stopping time, the rvX�(m) � X(t�(m)) [respectively,X�(m) �
X(t�(m))] is Ft (m)-measurable (respectively,Ft (m)-measurable).
Similarly, the rv t�(m) [respectively, t�(m)] being also aGn-
stopping time, the rvU�(m) � U(t�(m)) [respectively,U�(m) �
U(t�(m))] is Gt (m)-measurable (respectively,Gt (m)-measurable).
If X�(m) = X(t�(m)) = z; then t�(m) marks the beginning
of a cycle, and the policyg� is used throughout that cycle by
definition of �: For each` = 1; 2; � � � ; let T �(`) [respectively,
T�(`)] denote the length of thèth cycle during which the policyg�

(respectively,g�) is used, and set��(`) � �`
s=1 T

�(s) [respectively,
��(`) � �`

s=1 T�(s)]. The rv ��(`) [respectively,��(`)] represents
the total number of slots in thè first cycles during whichg�

(respectively,g�) is used. With this notation we have the following.
Lemma 2: Assume A1) holds. Under PPP�; the rvs

f(X�(m);U�(m));m = 1; 2; � � �g [respectively, f(X�(m);
U�(m));m = 1; 2; � � �g] form a regenerative process with
regeneration epochs at successive visits to the setfzg � U:

For an arbitrary one-step cost functionc: S � U ! ; we now
study the convergence ofJc(�(k)) ask; the number of cycles, goes
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to 1: For each̀ = 1; 2; � � � ; the rvsZ�

c (`) andZc�(`) defined by

Z�

c (`) �

� (`)

m=� (`�1)+1

c(X�(m); U�(m))

and

Zc�(`) �

� (`)

m=� (`�1)+1

c(X�(m);U�(m))

represent the total costs over the`th cycle during which the policies
g� and g� are used, respectively.

For eachk = 1; 2; � � � ; if the rv ��(k) [respectively,��(k)] counts
the total number of cycles in the firstk cycles during whichg�

(respectively,g�) is used, then we find

�(k)�1

t=0

c(X(t); U(t)) =

� (k)

`=1

Z�c (`) +

� (k)

`=1

Zc�(`): (11)

With c � 1; this last relation specializes to

�(k) =

� (k)

`=1

T �(`) +

� (k)

`=1

T�(`): (12)

For eachk = 1; 2; � � � ; we also find it convenient to introduce the
averaged quantities

AZ�c (k) �
1

��(k)

� (k)

`=1

Z�c (`) (13)

and

AZc�(k) �
1

��(k)

� (k)

`=1

Zc�(`) (14)

as well as

AT �(k) �
1

��(k)

� (k)

`=1

T �(`) (15)

and

AT�(k) �
1

��(k)

� (k)

`=1

T�(`): (16)

It is plain from Lemma 2 that the rvsfZ�c (`); ` = 1; 2; � � �g
[respectively,fZc�(`); ` = 1; 2; � � �g] form a (possibly delayed)
renewal sequence underPPP�; with EEE�[Z�c (`)] = EEEg

z [Zc] and
EEE�[Zc�(`)] = EEEg

z [Zc] for each ` = 2; 3; � � � : Keeping in mind
that a.s. convergence statements are taken underPPP�; we have by
Lemma 1 thatlimk �

�(k) = limk ��(k) = 1 while by Lemma 2
the strong law of large numbers underPPP� yields

limk AZ
�

c (k) = EEEg
z [Zc] a:s: (17)

and

limk AZc�(k) = EEEg
z [Zc] a:s: (18)

as well as

limk AT
�(k) = EEEg

z [T ] a:s: (19)

and

limk AT�(k) = EEEg
z [T ] a:s: (20)

Fix k = 1; 2; � � � : Set q(k) � (��(k)=k) and note(��(k)=k) =
1 � q(k): From (11), (12), we have

�(k)

k
= q(k)AT �(k) + (1� q(k))AT�(k)

p(�(k)) =
q(k)AT �(k)

q(k)AT �(k) + (1� q(k))AT�(k)
(21)

and

Jc(�(k)) =
q(k)AZ�c (k) + (1� q(k))AZc�(k)

q(k)AT �(k) + (1� q(k))AT�(k)
(22)

with the convention(0=0) = 0: Letting k go to infinity in
these expressions, we see from (17)–(20) that underPPP� the
sequencesf(�(k)=k); k = 1; 2; � � �g; fp(�(k)); k = 1; 2; � � �g; and
fJc(�(k)); k = 1; 2; � � �g converge a.s. as soon asfq(k); k =
1; 2; � � �g does.

Theorem 2: Under A1)–A4), we havelimk q(k) = q� a.s. where

q� �
p�EEEg

z [T ]

(1� p�)EEEg
z [T ] + p�EEEg

z [T ]
: (23)

This key convergence result is proved in the next section and leads
to the following convergence results along recurrence epochs by the
calculations outlined earlier.

Theorem 3: Under A1)–A4), we have

limk p(�(k)) = p� a:s: (24)

and for any mappingc: S � U ! such thatEEEg
z [jZcj]<1; it

holds that

limk Jc(�(k)) = p�Ic(g
�) + (1� p�)Ic(g�) a:s: (25)

Moreover, the law of large numbers holds in the form

limk

�(k)

k
= q�EEEg

z [T ] + (1� q�)EEEg
z [T ] a:s: (26)

Applying (25) to the prespecified cost mappingv; we get
limk Jv(�(k)) = V from (4) and (5).

V. A PROOF OF THEOREM 2

Crucial to the proof of Theorem 2 is the following deterministic
lemma.

Lemma 3: Let fa(k); k = 1; 2; � � �g; fb�(k); k = 1; 2; � � �g and
fb�(k); k = 1; 2; � � �g be -valued sequences such thatb�(k)> 0
and b�(k)> 0 for k = 1; 2; � � � ; and limk b

�(k) = limk b�(k) = 0
and limk a(k) = a for some a in : If the -valued sequence
f�(k); k = 1; 2; � � �g is defined recursively by

�(k + 1) =
�(k)� b�(k); if �(k)>a(k)
�(k) + b�(k); if �(k) � a(k)

(27)

for k = 1; 2; � � � ; with �(1) arbitrary in ; then eitherf�(k); k =
1; 2; � � �g converges monotonically (in the tail) to some constant
�(1) 6= a; or limk �(k) = a:

Proof: By assumption, given"> 0; there exists a positive
integer k" such thatb�(k)<"; b�(k)<"; and ja(k) � aj<" for
all k � k"; and definem" = inf fk � k": �(k) 2 (a� "; a+ ")g: If
m" =1; then�(k) is not in the interval(a�"; a+") for all k � k":
If �(k") � a � "; an easy induction argument based on (27) shows
that for all k � k"; we have�(k) � a; thus�(k) � a � ": Hence,
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the sequencef�(k); k = 1; 2; � � �g is monotone increasing from time
k" onward and thus must converge to some value�(1) � a � ":

The case�(k") � a + " is handled similarly.
Supposem"<1 so that�(m") now lies in(a�"; a+"): A worst

case argument based on (27) then givesa � " � b�(m")<�(m" +

1)<a + "+ b�(m"): If a � "< �(m" + 1)<a + "; then the same
worst case argument also yields

a� "� b�(m" + 1)<�(m" + 2)<a+ "+ b�(m" + 1):

If �(m" + 1) does not belong to(a� "; a + "); then two cases are
possible: either 1)a�"�b�(m")<�(m"+1) � a�"; in which case
�(m"+1)<a(m"+1); thus�(m"+2) = �(m"+1)+ b�(m"+1)

by (27), and we get

a� "� b�(m") + b�(m" + 1)<�(m" + 2)<a� "+ b�(m" + 1)

or 2) a + " � �(m" + 1)<a + " + b�(m"); in which case
�(m"+1)>a(m"+1); thus�(m"+2) = �(m"+1)� b�(m"+1)

by (27), and we get

a+ "� b�(m" + 1)<�(m" + 2)<a+ "+ b�(m")� b�(m" + 1):

Collecting these inequalities we concludea � " �

max fb�(m"); b
�(m" + 1)g<�(m" + 2)<a + " +

maxfb�(m"); b�(m" + 1)g: An induction argument now implies

a� "� max
0�i<`

b�(m" + i) � �(m"+ `) � a+ "+ max
0�i<`

b�(m"+ i)

for all ` = 1; 2; � � � : Becausem" � k"; the definition ofk" yields
a � 2"< �(k)<a + 2" for all k � m"; and " being arbitrary, the
proof is now complete.

A proof of Theorem 2 is now feasible: as we note from the
definition of � that

��(k + 1) = ��(k) + 1[Jv(�(k)) � V ]; k = 0; 1; � � �

(28)

it is plain that the rvsfq(k); k = 1; 2 � � �g can be defined recursively
by

q(k + 1) =
q(k)�

1

k + 1
q(k); if Jv(�(k))>V

q(k) +
1

k + 1
(1� q(k)); if V � Jv(�(k))

for k = 1; 2; � � � : For eachk = 1; 2; � � � ; we set

Y (k) �
AT�(k)V �AZc�(k)

(AZ�c (k)�AZc�(k))� (AT �(k)�AT�(k))V
:

Invoking the convergence (17)–(20), we get

limk Y (k) =
EEEg
z [T ]V �EEEg

z [Zv]

(EEEg
z [Zv] �EEEg

z [Zv ])� (EEEg
z [T ]�EEEg

z [T ])V

so that limk Y (k) = q� a.s. by simple algebra based on (4), (5),
and (23).

Pick a sample! in the set ofPPP�-measure ones where (17)–(20)
simultaneouslyhold, thuslimk Y (k; !) = q� as well. Under con-
dition A4), the denominator ofY (k; !) is positive for largek:
It is now plain from (22) (with c = v) that for large k; say
k � k�(!); the conditionJv(�(k;!); !)>V holds if and only if
q(k; !)>Y (k; !); and the sequencefq(k+k�(!); !); k = 1; 2 � � �g

indeed satisfies the recursion (27) with�(k) = q(k + k�(!); !);

a(k) = Y (k+k�(!); !); b
�(k) = (q(k+k�(!); !)=k+k�(!)+1)

and b�(k) = ((1 � q(k + k�(!); !))=k + k�(!) + 1) for all
k = 1; 2; � � � : Because0 � q(k+k�(!); !) � 1; the assumptions of
Lemma 3 are immediately satisfied witha = q�; and the sequence
fq(k+k�(!); !); k = 1; 2; � � �g does converge. It is not possible for
the valuesfq(k+k�(!);!); k = 1; 2; � � �g to converge monotonically
(in the tail) to some value not equal toq�; for this would imply that
the policy� sticks to one policy from some cycle onward, in clear
contradiction with Lemma 1. Hence,limk q(k; !) = q�:

VI. PERFORMANCE OF THESTEERING POLICY

Theorem 1 is easily recovered from Theorem 3. For eachn =
1; 2; � � � ; let k(n) � max fk � 0: �(k) � ng be the number of
cycles over the horizon[0; n) including the one in progress at time
n; and note that�(k(n)) � n< �(k(n) + 1) so that

�(k(n))

n
Jc(�(k(n))) � Jc(n) �

�(k(n) + 1)

n
Jc(�(k(n) + 1))

for any nonnegative mappingc: S � U ! +; and in particular

�(k(n))

n
p(�(k(n)))� p(n) �

�(k(n) + 1)

n
p(�(k(n) + 1)):

By Lemma 1, limn k(n) = 1, while by the law of large
numbers (26), it is clear thatlimk (�(k)=�(k + 1)) = 1 a.s. and
because(�(k(n))=�(k(n) + 1)) � (�(k(n))=n) � 1; we have
limn (�(k(n))=n) = limn (�(k(n)+ 1)=n) = 1 a.s. By Theorem 3,
the inequalities earlier in the discussion, together with the last
convergence, yield (7) and (9) for nonnegative mappings. For a
general cost mappingc (and in particularc = v), start with the
decompositionJc(n) = Jc (n) � Jc (n) for all n = 1; 2; � � � ;
wherec� � max (�c; 0): Applying the result for nonnegative map-
pings developed above, we concludelimn Jc(n) = limn Jc (n) �
limn Jc (n) = p�Ic(g

�) + (1 � p�)Ic(g�) a.s. and Theorem 1 is
established with (8) an immediate consequence of (9).
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